Reg. No.

Question Paper Code : 73448

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Fourth Semester

Electronics and Communication Engineering

EC 2254/EC 44/10144 EC 405/EC 1254/080290022 — LINEAR INTEGRATED CIRCUITS

(Regulations 2008/2010).

(Common to PTEC 2254 Linear Integrated Circuits for B.E. (Part – Time) Third Semester – ECE – Regulations 2009)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State the advantages of integrated circuits over discrete components.
- 2. Define offset voltage of an operational amplifier.
- 3. Design and sketch an operational amplifier subtractor circuit.
- 4. What is the difference between basic comparator and Schmitt trigger?
- 5. What is a two Quadrant multiplier?
- 6. Define frequency synthesizing.
- 7. Mention any two specifications of a D/A converter.
- 8. For an n-bit flash type A/D converter, how many comparators are required? State the disadvantage of that type of converter.
- 9. State the need for current limiting in voltage regulators.
- 10. How does switched capacitor emulate resistor?

PART B --- (5 × 16 = 80 marks) '

1.	(a)	(i)	Compare different configurations of Differential Amplifier. (8)		
		(ii)	For a dual input, balanced output differential amplifier, Rc = 2.2 k Ω , R _E = 4.7 k Ω , $R_{S1} = R_{S2} = 50\Omega$. The supply voltages are \pm 10V. The hfe for the transistor is 50. Assume silicon transistors and hie = 1.4 k Ω . Determine the operating point values, differential gain, common mode gain and CMRR. (8)		
			Or		
	(b)	(i)	State the advantages of Integrated circuits over discrete (4)		
		(ii)	Explain the fabrication process of Monolithic Integrated circuits with necessary diagrams. (12)		
			i i i i i i i i i i i i i i i i i i i		
2.	(a)		lain the working principle of (8)		
	, j	(i)	Instrumentation amplimer		
		(ii)	Schmitt trigger.		
		•	Or		
	(b)	Exp	Explain the working principle of		
		(i)	Precision Full wave rectifier (8)		
	2	(ii)	Integrator. (8)		
13.	(a)	Dra	w the analog multiplier IC and explain its features. (16)		
		8	Or		
ł	. (b)	Exp ran	blain the basic blocks of PLL and determine expressions for lock-in age and capture range. (16)		
14.	(a)	(i)	Design a suitable D/A converter to convert 8-bit binary input in parallel form. Binary '0' corresponds to OV and binary '1' to 5V. Maximum output is +5V. Assume any other data that may be required. Explain its operation. (10)		
		(ii)	Write a note on high speed sample and hold circuits. (6)		
			Or		
	(b)	(i)	With circuit diagram explain the operation of a flash type A/D (8)		

(ii) Compare the properties of successive approximation type and dual slope type converters. (8)

15. (a)

(i)

Draw the circuit using op-amp to generate triangular wave- Explain (8) its operation.

 (ii) With a neat diagram, explain the working principle of step downswitching regulator.
 (8)

Or

- (b) With a suitable circuit diagrams, explain the working of the following
 (8)
 - (i) video amplifier.
 - (ii) Voltage to frequency converter.

(8)